The impact of porous media heterogeneity on non-Darcy flow behaviour from pore-scale simulation

نویسندگان

  • Bagus P. Muljadi
  • Martin J. Blunt
  • Ali Q. Raeini
  • Branko Bijeljic
چکیده

The effect of pore-scale heterogeneity on non-Darcy flow behaviour is investigated by means of direct flow simulations on 3-D images of a beadpack, Bentheimer sandstone and Estaillades carbonate. The critical Reynolds number indicating the cessation of the creeping Darcy flow regime in Estaillades carbonate is two orders of magnitude smaller than in Bentheimer sandstone, and is three orders of magnitude smaller than in the beadpack. It is inferred from the examination of flow field features that the emergence of steady eddies in pore space of Estaillades at elevated fluid velocities accounts for the early transition away from the Darcy flow regime. The non-Darcy coefficient β , the onset of non-Darcy flow, and the Darcy permeability for all samples are obtained and compared to available experimental data demonstrating the predictive capability of our approach. X-ray imaging along with direct pore-scale simulation of flow provides a viable alternative to experiments and empirical correlations for predicting non-Darcy flow parameters such as the β factor, and the onset of non-Darcy flow. © 2015 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Dynamic Analysis of Porous Media using Generalized Plasticity Model and Non-Darcy Flow Rule

Biot equations that consider fluid and soil interaction at the same time are the most applicable relationships in the soil dynamic analysis. However, in dynamic analysis, due to the sudden increase in the excess pore pressure caused by seismic excitation and the occurrence of high hydraulic gradients, the assumption of the Darcy flow used in these equations is questionable. In the present study...

متن کامل

Absolute Permeability Calculation by Direct Numerical Simulation in Porous Media

Simulating fluid flow at micro level is an ongoing problem. Simplified macroscopic flow models like Darcy’s law is unable to estimate fluid dynamic properties of porous media. The digital sample reconstruction by high resolution X-ray computed tomography scanning and fluid-dynamics simulation, together with the increasing power of super-computers, allow to carry out pore-scale simulations throu...

متن کامل

Investigation of pore-scale random porous media using lattice boltzmann method

The permeability and tortuosity of pore-scale two and three-dimensional random porous media were calculated using the Lattice Boltzmann method (LBM). Effects of geometrical parameters of medium on permeability and tortuosity were investigated as well. Two major models of random porous media were reconstructed by computerized tomography method: Randomly distributed rectangular obstacles in a uni...

متن کامل

Estimation of Friction Coefficient in Sediment Contained Flow through Rockfill

An increase in the flow velocity in flowthrough large porous media and deflection of flow regime from Darcy law causes a nonlinear relationship between hydraulic gradient and pore velocity of media. So many investigations have done previously in such Medias. One of the most important subjects in flowthrough large porous media is relationship between friction coefficient and flow characteristics...

متن کامل

Direct simulations of two-phase flow on micro-CT images of porous media and upscaling of pore-scale forces

Pore-scale forces have a significant effect on the macroscopic behaviour of multiphase flow through porous media. This paper studies the effect of these forces using a new volume-of-fluid based finite volume method developed for simulating two-phase flow directly on micro-CT images of porous media. An analytical analysis of the relationship between the pore-scale forces and the Darcy-scale pres...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2015